An areal pest risk assessment based on spatial and temporal distribution of places of production

Juha Tuomola¹, Hanna Huitu², Jaakko Heikkilä² and Salla Hannunen¹

¹ Finnish Food Safety Authority Evira ² Natural Resources Institute Finland

Introduction

Resources for the plant health surveys are limited

→ Necessary to develop methods that enable efficient targeting of the surveys

We use

information on spatial and temporal distribution of places of production

To locate areas

where the likelihood of invasion, and the magnitude of impacts of invasive pests are likely to be high

Areal risk indices

- Not pest specific!
- Based on distribution of crop plants (species, genus or other taxa)
- ENTRY
 ESTABLISHMENT AND SPREAD Index (€)
- 1 × 1 km grid
- The length of the study period is not fixed, but needs be constant over one analysis
- Indices do not represent actual likelihoods, but they allow comparison of the relative likelihoods

Calculated for each cell based on

the average annual area where imported propagation material has been used

Establishment and Spread index

Calculated for each cell based on

- Habitat density spatial distribution of habitats
- Habitat persistence temporal distribution of habitats

Habitat density subindex

Calculated for each cell using the kernel density estimation

In which

- <u>a curved surface is fitted around the center</u> <u>point of each field</u> based on the quadratic kernel function described by Silverman (1986) so that <u>the size of a field is used to</u> <u>define the volume under the surface</u>
- 2) the values of all the kernel surfaces in the cell center are added up

Silverman, B. W. Density Estimation for Statistics and Data Analysis. New York: Chapman and Hall, 1986

Habitat persistence subindex

Calculated for each field based on

- The number of years during which the studied plant has been cultivated (*A*)
- The longest gap in the production of the studied plant in years (*B*)
- The length of the study period in years (*t*)

Each field is assigned weight based on its size (C)

$$A \times (t-B) \times C$$

Calculated for each cell by summing up the values of the fields located in the cell

Establishment and Spread index

Both subindices are calculated for each study year separately

- habitat density subindex (spatial distribution of habitats)
- habitat persistence subindex (temporal distribution of habitats)

The annual sub indices are multiplied with each other

An average over years is taken

Calculated for each cell based on

average annual value of the production ($\textcircled{\bullet}$)

Strawberry as a case study

• Based on nine year cropping history (2006 – 2014)

Strawberry production in Finland

3300 ha, 1100 farms, 4800 fields

Only 20% of the propagation material domestic

80-85 farms inspected annually (7%)

Recent introductions

- Phytophthora cactorum
- Colletotrichum acutatum
- Xanthomonas fragariae
- Phytophthora fragariae

Summary

- Spatial and temporal distribution of places of production is used to describe areal risk with risk indices
- Indices do not represent actual likelihoods, but they allow comparison of the relative likelihoods
- Simple methodology for a practical problem, i.e. targeting phytosanitary surveys
- Results are published in an easy-to-use web mapping service for plant health inspectors

How to

define connected production areas?

target the inspections based on the results?

Thank you!

