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Introduction 

Information about alien pest invasions is often scarce and imprecise –  
this makes the assessment of pest invasion risk a daunting task 
 

Commonly, it is impossible to derive a single estimate of risk – instead,  
an analyst deals with a set of plausible estimates based on ensembles of 
different models, expert opinions or stochastic forecasts 
 

In this case, prioritizing and comparing risk assumes choosing between 
sets of plausible risk values 
 

The ambiguity in the distributions of risk estimates affects a decision-
maker’s capacity to differentiate distinct levels of risk and make sensible 
recommendations for managing and mitigating risk 
 

We address this problem with a continuous hypervolume measure that 
factors in the ambiguity in the data and can be used to compare and 
prioritize uncertain estimates of risk for decision-making 
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ℵ1 - ℵ4 – non-dominant sets (by SD rule) 

When risk estimates are certain, they can be ordered 
(or compared) via equality / inequality operators; the 
ordering is only limited by the measurement accuracy  
 

Ordering uncertain estimates requires comparing their 
CDFs. CDFs can be compared via a pairwise 
stochastic dominance (SD) rule: 
 

CDF F(x) dominates G(x) by 1st order SD rule if: 
 

F(x) ≤ G(x) for all x and F(x) < G(x) for one or more x. 
 

When the dominance for F over G and G over F fail,  
it is impossible to establish a preference order 
between F and G and the CDFs of F and G become 
non-dominant to each other 
 

Thus, uncertainty in the data diminishes our ability  
to discriminate different classes of risk and makes our 
assessments coarser 

 
Certain vs. uncertain estimates of risk 
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Issues with non-dominant sets 

Furthermore, the SD rule can only establish rank order relationships 
between sets of CDFs. Distinct non-dominant sets are ordinal (i.e., ranks), 
so their exact positions within the "high-low" risk gradient are unknown 
 

This limits the practical utility of the method, which requires the  
subsequent step of converting the order ranks to a meaningful and 
continuous decision-making priority measure 
 

Ideally, each non-dominant set would be characterized by a continuous 
priority measure that defines its position in the same dimension space. 
Such a measure would enable comparison of different rankings within the 
same frame of reference, while factoring in the uncertainty in the data 
 

We propose a hypervolume indicator (HV, also called the S-metric 
(Fleischer 2003) or Lebesgue measure (Laumanns et al. 2000)) to 
characterize the position of the non-dominant sets in a continuous space 
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A hypervolume of a non-dominant set:  
A geometric illustration 
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Depicting CDFs as points  
in dimensions of x1, x2 and x3 

Consider a set A of four CDFs  
sampled at discrete points x1, x2, x3: 
  CDF 1: (0.25, 0.375, 0.875) 
  CDF 2: (0.375, 0.5, 0.625) 
  CDF 3: (0.45, 0.45, 0.55) 
  CDF 4: (0.125, 0.25, 1) 

CDFs: 

A hypervolume under a set of points  
1-4 and a reference point r = (0,0,0) 

CDFs: 
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The hypervolume (HV ) of a non-dominant subset A, A ⊆ N can be  
defined as the hypervolume of the k-dimensional space that is  
dominated by the set A and is bounded by a reference point r = (r1,..., rk): 
 
  

 
where λ(A) is the Lebesgue measure of a set A and  
[f1(a), r1] × [f2(a), r2] ×...×[fk(a), rk] is the k-dimensional hypercuboid consisting of all 
points that are dominated by the point a but not dominated by the reference point r 
(Brockhoff et al. 2008).  
 

A set with a larger HV presents a better trade-off between the dimensions in which 
the HV was measured (Zitzler et al. 2003) 
 

HV is known to be strictly monotonic with respect to Pareto optimality and tends to 
prioritize convex sets (Beume et al. 2007; Zitzler and Thiele 1998) 
 

In our particular case, the HV(1/k) value is bounded by [0;1] interval and represents  
a more convenient priority measure than the original HV value 
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A hypervolume of a non-dominant set:  
A formal definition 
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Case study example: assessing risk of spread  
of Asian longhorned beetle in Greater Toronto, ON 

Major highways 
Regulated area 
Past and present  
ALB infestations  

Asian longhorned beetle (ALB) 
Known infestations in New York (NY),  
Chicago (IL) Jersey City (NJ), Worcester (MA), 
Carteret (NJ), and Toronto (ON) (Shatz et al., 
2013; Turgeon et al. 2010) 
 

Major pest of maple (Acer spp.), birch (Betula 
spp.), poplars (Populus spp.) and willows (Salix 
spp.), one of the most harmful pests in Europe 
and North America 
 

ALB’s biological spread rate is very slow   
(<300 m/yr., Favaro et al. 2015). Growing 
evidence suggests that the species may 
hitchhike on slow-moving vehicles, similar to 
other pest species (Buck and Marshall 2008) 
 

This indicates that local vehicle traffic volumes 
could be a potential predictor of ALB spread in 
urban environments 
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Urban traffic and spatial data inputs 

Traffic Pattern Project dataset (Cook 
and Downing 2013, USDA  APHIS 
PPQ, Ft. Collins) 
  

Interpolated the TrafficMetrix Inc. 
(Tetrad 2014) annual averaged daily 
traffic volumes (AADT) over  
Greater Toronto’s street network 
 

Land cover classification map  
(10-m resolution, courtesy of 
OMNR) 
 

Current locations of ALB 
infestations and the 
boundaries of the current 
regulated area 
 

< 14k 
14k- 20k 
20k- 30k 
> 30k 

Local traffic  
volumes 
 (AADT): 

Commercial 
Government 
Open Areas 
Parks 
Residential 
Industrial 
Water 

Land  
use: 
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Synthesizing the traffic data into a human-mediated 
spread matrix 

The spatial resolution (400 m) of the study was 
dictated by current regulatory constraints and 
mandatory eradication protocols for ALB 

 

The traffic count data were used to calculate the 
relative spread rates of ALB from each 400x400-m 
block to adjacent blocks in eight directions:  
N, S, E, W, NW, NE, SW and SE 

We used the sums of traffic volumes from one block to another in each direction to 
estimate the relative spread rates pij between the locations in Greater Toronto area 
 

Divided and 400-series controlled-access highways with high-speed traffic  
were not included 
 
  

The spread rates are relative values (i.e., pij = traffic ij / trafficmax ) and were further 
calibrated to match the historical spread rates 
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                                       For each 400-m block in the street network: 
        

                           - Simulated “spread” events from infested  
                                                       (or likely infested) block(s) to other blocks  

  

                                                    - If “arrival” of the pest at the next block was   
           successful, simulated the spread of ALB  
           from the next to other blocks and so on 

         - Once simulations were completed, multiplied the  
           spread arrival rate by the probability of pest   
           survival in a given land type      

 

         The spread matrix of ALB arrival rates, pij was  
calibrated so that the patterns  of pest arrival recreated through simulations matched  
the historical spread rate prior to eradication (i.e., 12 new infestation nuclei per year) 
 

We generated 5000 probabilistic spread scenarios from the areas infested (or likely  
Infested) with ALB to locations outside of the regulated area - each 400-m  
block was characterized by a distribution of 5000 arrival rate values, pj 
 

We used the distributions of the pj values to illustrate the hypervolume technique 
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Generating the stochastic spread patterns with  
the stochastic simulations 
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Average ALB arrival rates and their variation  

Mean ALB arrival rates, pj  

                                (Mean and std. deviation of 5000 randomized spread scenarios) 
Std. deviations of the pj values 

< 0.01 (low) 
0.01 – 0.02 
0.02 – 0.10 
0.10 – 0.20 
0.20 – 1 
≥ 1 (high) 

pj , Std.dev.(pj): 

1*10-6   0.00006    0.006  0.06 
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Order rank and hypervolume estimates 

Order rank based on a delineation  
of the non-dominant sets 

Hypervolume of the  
non-dominant sets, HV1/k* 

< 0.4 (low) 
0.4 – 0.6 
0.6 – 0.8 
0.8 – 1 (high) 

HV1/k*,  
order rank**: 

*  The kth root of the hypervolume value is shown so that the HV1/k range fits to a 0-1 interval  
**Order rank is based on the delineation of nested non-dominant sets starting from the  
   highest-risk sets. The ordinal rank values are rescaled linearly to fit to a 0-1 interval  



13 

0

0.2

0.4

0.6

0.8

1

0.00001 0.001 0.1 10

Sensitivity of the HV estimates to the number  
of CDF sampling intervals 

*  Order rank is based on the delineation of nested non-dominant sets starting from the  
   highest-risk sets. The ordinal rank values are rescaled linearly to fit to a 0-1 interval  
**The kth root of the hypervolume value is shown so that the HV1/k range fits to a 0-1 interval  
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The hypervolume vs. order rank 

*  The kth root of the hypervolume value is shown so that the HV1/k range fits to a 0-1 interval  
**Order rank is based on the delineation of nested non-dominant sets starting from the  
   highest-risk sets. The ordinal rank values are rescaled linearly to fit to a 0-1 interval  
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Concluding points 
The HV approach addresses some important issues in assessing risk from uncertain data: 
    - Factors in uncertainty by finding non-dominant sets and coarsening risk gradations  
    - Can be applied when the source of uncertainty (e.g., Type I/II error) cannot be identified  
    - Can be used with other techniques, such as Pareto-based or multi-criteria rankings 
 

Compared to other CDF tests (e.g., Kolmogorov-Smirnov's, Kuiper's or Earth Mover’s 
Distance), the HV metric characterizes a set and also preserves preference order 
relationships among the non-dominant sets of distributions 
 

HV can be used to compare different rankings as long as the same CDF sampling intervals 
are used 
 

The outcomes of the SD tests depend on the number and the spacing of the  
CDF sampling intervals and the amount of the uncertainty in the data 
  

The approach can help deal with ensemble modelling data - when a distribution of  
forecasts is generated by the models with qualitatively distinct properties, so that  
averaging these outcomes to a summary metric is inappropriate 
 

Potentially wide area of applications in assessing risks of disturbances, climate change, 
floods, invasive pests, dealing with multiple GCM forecasts, etc. 



16 

References 
Beume, N., Naujoks, B., Emmerich, M. 2007. SMS-EMOA: Multiobjective selection based on dominated hypervolume. European 
Journal on Operational Research, 181: 1653-1669. 

Brockhoff, D., Friedrich, T., Neumann, F. 2008. Analyzing hypervolume indicator based algorithms. In: G. Rudolph et al. (Eds.): 
Parallel Problem Solving from Nature X, LNCS 5199, pp. 651–660. Springer-Verlag Berlin, Heidelberg. 

Buck, J.H. & Marshall, J.M. (2008) Hitchhiking as a secondary dispersal pathway for adult emerald ash borer, Agrilus planipennis. 
The Great Lakes Entomologist, 41(1-2), 197-198. 

Cook, G., Downing, M. 2013. Traffic Pattern Project Report: Methodology for Interpolating Traffic Count Data to a Road 
Network. USDA APHIS PPQ, Centre for Plant Health Science and Technology. Fort Collins, CO.  

Favaro, R., Wichmann, L., Ravn, H.P., Faccoli, M. 2015. Spatial spread and infestation risk assessment in the Asian longhorned 
beetle, Anoplophora glabripennis. Entomologia Experimentalis et Applicata 155(2): 95-101. 

Fleischer, M. 2003. The measure of Pareto optima. Applications to multi-objective metaheuristics. In: C.M. Fonseca, P.J. 
Fleming, E. Zitzler, K. Deb, and L. Thiele, Eds., Evolutionary Multi-Criterion Optimization. Second International Conference, EMO 
2003, pp.519-533, Faro, Portugal. Springer. Lecture Notes in Computer Science. Volume 2632. 

Laumanns, M., Zitzler, E., Thiele, L. 2000. A unified model for multi-objective evolutionary algorithms with elitism. In: 2000 
Congress on Evolutionary Computation, July 2000. Vol.1, pp 46-53, Piscataway, New Jersey. IEEE Service Center. 

Shatz, A.J., Rogan, J., Sangermano, F., Ogneva-Himmelberger, Y., Chen, H. 2013. Characterizing the potential distribution of the 
invasive Asian longhorned beetle (Anoplophora glabripennis) in Worcester County, Massachusetts. Appl. Geogr. 45: 259-268. 

Tetrad  2014. TrafficMetrix Canada. Official website: http://www.tetrad.com/maps_and_data/canada/traffic/ 

Turgeon, J.J., Pedlar, J., de Groot, P., Smith, M.T., Jones, C., Orr, M., Gasman, B. 2010. Density and location of simulated signs of 
injury affect efficacy of ground surveys for Asian longhorned beetle. Canadian Entomologist 142: 80-96. 

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., da Fonseca, V. G. 2003. Performance assessment of multiobjective 
optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2):117-132. 

Zitzler, E., Thiele, L.. 1998. Multiobjective Optimization using evolutionary algorithms - a comparative case study. In: Conference 
on Parallel Problem Solving from Nature (PPSN V), pages 292-301, Amsterdam, 1998. 

 

 


	A HYPERVOLUME APPROACH FOR ASSESSING RISK UNDER UNCERTAINY
	Introduction
	Slide Number 3
	Issues with non-dominant sets
	A hypervolume of a non-dominant set: �A geometric illustration
	A hypervolume of a non-dominant set: �A formal definition
	Case study example: assessing risk of spread �of Asian longhorned beetle in Greater Toronto, ON
	Urban traffic and spatial data inputs
	Synthesizing the traffic data into a human-mediated spread matrix
	Slide Number 10
	Average ALB arrival rates and their variation 
	Order rank and hypervolume estimates
	Sensitivity of the HV estimates to the number �of CDF sampling intervals
	The hypervolume vs. order rank
	Concluding points
	References

