A generic decision tool for assessing response options to tree pests in the UK

11th meeting: Ottawa, Canada 29 August-1 September 2017

***iPRRG**

Content

- What we were asked to do
- How we did it
- Decision Support Tool
- Limitations

NB: we haven't finished it!

Some Australian words of wisdom

Virtually all decision support people are time-pressured seldom have the luxury of researching specific species in detail over months or years

.....usually asked to predict the economic, environmental and social impacts of threatening or newly-arrived species in areas they have not been observed in before; all within a matter of hours, days or (at best) weeks.

.....Moreover, the context to which a response effort is to be made constantly changes due to external pressures

(Cook, D.C., Wilby, A., & Fraser, R.W. Improving Plant Biosecurity Policy Evaluation and Prioritisation: The Economic Impacts of Pests and Diseases)

Why do we need a Decision Support **fera** Framework?

What we were asked to do

Develop a Decision Support Framework & Tool for tree pest/disease management

Requirements:

- Generic
- Clear and replicable
- Simple and transparent
- Quick results
- Easily accessible to a range of end-users

Project team

Customer

Modellers

Economics and ecosystem services

Development process

Steering group meetings:

- Model requirements
- Choice of platform
- Additional outcome: more input from policy makers needed
- Stakeholder workshops (co-design of the tool):
 - Attending: PH policy makers, social scientists, modellers,...
 - First WS: How will the outputs be used and how should they be presented?
 - Second WS: presentation & feedback on working version of tool

Project advisory group reviews:

Feedback on process and model

End-user Needs

- Standardised framework for scenario assessment
- Help integrate quantitative model outputs:
 - Set quantitative analysis into context
 - + Legal, social,... implications of management options; urban vs natural environment; "What-if" scenarios
 - Assessment of uncertainty
 - Easily digestible visualisations
- Can be used and understood by a range of end-users

Provide a basis for the <u>narrative between the</u> <u>quantitative cost benefit analysis and the policy</u> <u>decision</u> that includes wider social and political concerns

Choice of Platform

Standard - widely used

Easy to "see"

Choice of Platform

Estimates the proportion of affected hosts (the "incidence") at the time of first detection, based on:

- Total host area
- Spread rate + uncertainty
- Interval between sampling
- Number of samples

Prevalence model

fera Epidemiological model: SIVR Reduction in infection rate by factor $\frac{1}{1+\delta\gamma_{SPRAY}}$ due to first found spraying Model **Bio-economic** Susceptible Infected Rate of spread of infection, β Vaccination of Removal of infected susceptible area at area at rate $\delta \gamma_{FELL}$ rate $\delta \gamma_{VACC}$ Vaccinated Removed

ics

Environmental Values

Timber, landscape, carbon, biodiversity, recreation, air quality, "other"

- Various issues
 - Old stated preference data (pre-2003) not produced to value ecosystem service losses
 - Context urban trees v wilderness trees
 - Recommendation from PAG not to use the biodiversity value

User Inputs - initial set up

General parameters		The rate of spread
Area (ha):		Set expected time until the initial infected area doubles (months):
		Time until the initial infected area doubles (months):
100000	÷	18
Annual discount rate:		Set the minimum area (ha) below which the infection will be eradicated:
		Threshold area for extinction (ha):
0.035	÷	1
Baseline initial infected area (ha):	<u> </u>	
100	•	
	/	
Number of replicates (large number means more reliable results but slower simulations):		
100	-	

User Inputs - type of control, efficacy, & cost

Control options

Select control model (only one model can be selected) and press Update; note changed input box below:

Control model:

Infected area	•			
Infected area				
Healthy area		lling (assumes: value as selected in		
Rate of spread				
managing one ha):				
60	*			
Select the costs per ha for implementing the desired control option				
Cost per ha of managed land (GBP):				
3000	•			

Values at risk

Specify the value of timber (assumes continuous cropping and no changes to age structure):

Value from healthy forest

(please use the sliders to select lower and upper values; separate the sliders if necessary)

Timber (GBP per ha):

Value for infected forest (% of healthy)

(please use the sliders to select a single value)

% of healthy value:

User Inputs - uncertainty, effort

FC Tool Welcome

e Dashboard

Settings - Input/output menu -

t menu 🚽 🛛 Report

enu – Helr

Simulation trace: (points=average, bars=+/- st. dev.)

Other User Inputs

General parameters		
100000	*	18
Annual discount rate:		Set the minimum area (ha) below which the infection will be eradicated:
0.005		Threshold area for extinction (ha):
0.035	Ŧ	1

Baseline initial infected area (ha):		
100	*	
Number of replicates (large number means mo	re	
reliable results but slower simulations):		
100		
100		

Outputs

Distribution of avoided damages (accumulated over 25

Simulation trace: (points=average, bars=+/- st. dev.)

Limitations

- Only one spread model
- Spread assumed constant over time
- Limited control options
- Environmental values
- ... there are others!

= future development opportunities!

The C\$80.64m question (US\$ = C\$1.26)

• Will it be used?

• Should it be used?

Any suggestions for improvements gratefully received