

PEST RISK ANALYSIS IN PRACTICE

A quantitative assessment of the likelihood of *Spodoptera frugiperda* entering the EU at a sub-national spatial scale and the effect of mitigation measures

Alan MacLeod¹, Roger Day², Regan Early³, Ciro Gardi⁴, Allan Hruska⁵, Olaf Mosbach-Schulz⁴, Rodney Nagoshi⁶ & Wopke van der Werf⁷

¹ Defra, UK
 ² CABI, UK
 ³ Uni. Exeter, UK
 ⁴ EFSA, Parma, Italy

⁵ FAO, Rome, Italy
 ⁶ USDA, Florida, USA

⁷ Uni. Wageningen, Netherlands

IPRRG Annual Meeting, 16th – 19th October 2018, Taichung, Taiwan

BIOLOGY OF FALL ARMYWORM

- Feeds mainly on cereals, also cotton, tomato, roses ...
- Up to 1,000 eggs per female
- Eggs hatch 2-10 days
- Larvae 14-21 days
- Pupae 9-13 days
- Adults 12-14 days
- Multiple generations per year
- Does not establish where there are frosts

DISTRIBUTION PRE-2016

Fig. 2. Annual northward progress of fall armyworm and areas of continuous generations and of survival in mild winters in the United States.(Johnson, 1987)

RAPID SPREAD IN AFRICA 2016-2018

REQUEST FOR RISK ANALYSIS

- Request from plant health risk managers of European Union (within European Commission)
- Should focus on ...
 - the main pathways of entry into the European Union
 - establishment
 - effectiveness of control methods

ENTRY - TRADE

- Interception data indicate *S. frugiperda* is most often intercepted on:
 - Capsicum
 - Solanum melongena and other Solanum spp.(not potatoes)
 - Roses
 - Asparagus
- Other lepidoptera (*Helicoverpa* spp.) intercepted on maize (sweetcorn)
- Eventually consider all fruits and vegetables from core America & sub-Saharan Africa

CONCEPTUAL MODEL: ENTRY VIA EACH KEY COMMODITY

EVIDENCE DOSSIERS FOR PATHWAYS

- Dossiers for each pathway compiled with information to inform estimates of values for each sub-steps
- Information sources
 - scientific literature
 - trade / industry grey literature & websites
 - Youtube films of crop production systems *
 - experts knowledge (experience in Americas & Africa)
- Discussed dossiers and supplement with additional knowledge from working group
- Make estimates (individually) then as a group
- Later estimates made collectively (time pressure)

EXAMPLE: MAIZE (CORN ON THE COB)

Q. Mean percentage of infested product in export production fields at origin (over the next 5 years)

Percentile	1	25	50	75	99
Scenario					
A0: Current situation (% maize cobs infested)	0.1	0.3	0.5	0.7	1.0
A1: Additional measures (% maize cobs infested)	0.01	0.03	0.05	0.07	0.1

MODEL IMPLEMENTED USING @RISK

PATHWAY 1: MAIZE (SWEETCORN)

RESULTS (ALL COMMODITIES)

Sum all commodity pathways

DISTRIBUTION OF INFESTED COMMODITIES: TRADE

 Allocation of median values of all infested vegetable and cut flower host commodities entering the EU via trade then apportioned to NUTS 2 region in relation to human population.

PHYTOSANITARY MEASURES

- Commodities come from pest free area (PFA) ×
- Pest free place of production (PFPP)
- Pest free production site (PFPS)
- Cold treatments (commodities chill sensitive) x

Pest free consignment

- Inspected, found free from pest & symptoms
- Inspected in EU

Χ

PATHWAY 1: MAIZE (SWEETCORN)

Figure 4: Descending cumulative probability distributions for the entry of *S. frugiperda* with trade in sweetcorn under two scenarios A0 (current measures- hatched lines), and when regulated (A1, solid line).

ESTABLISHMENT

- Created an ensemble species distribution model (SDM)
- Based on eight modelling techniques
- Generates a relative suitability index
 - proportion cells predicted suitable where pest known to occur (correct +ve)
 - proportion cells predicted not suitable where pest known not to occur (correct -ve)
- Visualised using map with threshold of suitability index
 - Choice of threshold balances false +ve with false -ve

ESTABLISHMENT

Threshold: 0.452 Sensitivity: 95% (<u>95% sites</u> with the species classified as <u>suitable</u>; false negatives: 5%)

Specificity: 67% (67% of the sites without the species classified as not suitable; false positives: 33%)

ESTABLISHMENT – CLIMEX STUDY RAISES UNCERTAINTY

DRAFT

Spodoptera frugiperda

(Fall Armyworm)

Hannalene du Plessis¹, Johnnie van den Berg¹, Darren J. Kriticos^{2,3} & Noboru Ota²

¹Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa ²CSIRO, GPO Box 1700, Canberra, Australia ³The University of Queensland

ECO-CLIMATIC INDEX

 Climate suitability for *S. frugiperda* in Africa and Europe modelled using CLIMEX. Parameters from du Plessis et al., (2018) with irrigation scenario.

Conceptual Model: Entry - trade

 Allocation of median values of all infested vegetable and cut flower host commodities entering the EU via trade then apportioned to NUTS 2 region in relation to human population.

ENTRY INTO SOUTHERN EU (ANDALUCIA)

Entry into Andalucia via trade

25%	50% median	75%
1,200	2,600	6,400

 Immature stage would need to mature, pupate, attract mate, breed, locate host

ESTABLISHMENT - CONCLUSIONS

- Hundreds of thousands of larvae enter each year but are not distributed to areas of EU where establishment may be possible
- Very restricted area of establishment in EU
- Knowledge gaps remain about establishment

- As with many risk assessments, likelihood of transfer is least understood
 - Entry (movement into an area)
 - Establishment (biotic & abiotic factors)
 - Introduction relies on a "bridge" from entry to establishment (propagule pressure)

THANK YOU FOR YOUR ATTENTION

ENTRY: MIGRATION?

From sub-Saharan Africa (Sahel)
Dust arrives in Europe from Sahel via wind

- Migration via wind potential pathway?
- Ruled out by experts wind altitude too high

MIGRATION FROM NORTH AFRICA

MIGRATION FROM NORTH AFRICA

MIGRATION FROM NORTH AFRICA

 Descending cumulative probability distributions for mean number of *S. frugiperda* reaching the EU via natural migration from locations in North Africa each year – <u>contingent on establishment in North Africa</u>

ENTRY INTO SOUTHERN EU (ANDALUCIA)

• Entry into Andalucia via trade

25%	50% median	75%
1,200	2,600	6,400

- Immature stage would need to mature, pupate, attract mate, breed, locate host
- Entry into southern EU (largely Andalucia) via migration

25%	50% median	75%
4,000	32,000	200,000

- Adult would need to attract mate, breed, locate host
- But must establish in North Africa beforehand