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Delimiting pest surveys

- Aim to uncover full spatial extent of invasion 
- Continue regardless of the number of detections 

Known issues: 
- Uncertainty – uncertain estimates of spread do not guarantee 
a proper account for damages from the outcomes of survey actions 

- False negatives − infested trees at sites that have been 
inspected and no infestation was found 

Common strategy: 
- Maximize the expected area (or number of sites) with 
successful detections

Better approach:  Statistical quality control methods (acceptance sampling)  
- Widely used for quality control in manufacturing, food safety and disease control
- Helps address the issue of false negatives 
- Works with uncertain data 
- Can be designed to minimize inspection costs (Baker et al. 1993; Lattimore et al. 

1996) or achieve an acceptable level of risk of overlooking a defective item (Starbird
2005; Whiting et al. 2006; Yamamura et al. 2016; Chen et al. 2018)

Images: Florida Dept of Ag and Consumer Services; New York Dept of Environmental 
Conservation; Iowa Dept of Natural Resources; USDA-FS, R9, Allegheny NF; USDA
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Healthy trees 
(non-defective 
items)

Acceptance sampling
• Helps inspectors accept or reject a lot based on inspections of a 

sample of items in the lot 

• The inspection plan selects the lots, the sample size and 
the inspection method 

• The lot is accepted only if the number of defective items in the 
sample does not exceed the acceptance threshold

Acceptance sampling plan for multiple lots, 
subject to a budget constraint

Potential survey sites
Host trees at a survey site 

A set of trees surveyed 
Detection rate after inspecting a tree

If one or more trees is found infested 
the site is declared as infested 

Multiple lots 
Items in a lot
Sample of items inspected in a lot
1 - inspection error

If one or more items are found 
defective the lot is rejected

=
=
=
=

=

Pest survey      Acceptance sampling

Survey site   ( lot )

Infested trees 
(defective 
items)

Inspected 
sample

Spatial pest 
survey problem

=
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Problem 2: Minimize the expected number of infested trees 
in the sites that are inspected and declared 
uninfested or not surveyed (expected slippage)

Problem 1:     Minimize the expected area (number of sites) 
with undetected infestations

- Budget constraint on sampling cost, B

- A site can only be inspected at one sampling rate, m

Problem formulation 

xjm ∈ {0,1}

P(not detecting one or more 
infested trees at a site)

Expected slippage

[ ]( )∑∑∑
= = =

−
S

s

J

j

M

m

n
jsjm

jmex
S 1 1 1

)1(1min γ

Bgnx
J

j
j

M

m
jmjm ≤∑∑

= =1 1

Jjx
M

m
jm ∈∀=∑

=

      1
1









∑∑∑
= = =

S

s

J

j

M

m
jmsjmEx

S 1 1 1

1min

s.t:

J – potential survey sites, j
S – infestation scenarios, s
M – potential sampling rates, m
gj – sampling unit cost at a site j
γjs – infestation rate at a site j in a scenario s
e   – detection rate after inspecting a tree
xjm – binary decision variable to survey a site j at a sampling rate njm

Sets:

Parameters: 

Decision variables:
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Expected slippage

Probability that the 
survey fails to detect 

the infestation
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Expected number of 
infested trees in an 

unsampled population

Expected number of 
infested trees in a 

sampled population

Nj – number of host trees at a survey site j
γjs – infestation rate at a site j in a scenario s
ej – detection rate after inspecting a tree at a site j
njm – sample size rate at the sampling rate level m at a site j
xjm – binary decision variable to survey a site j at a sampling rate njm

• The expected number of infested trees in the sites that are inspected and declared 
uninfested or not surveyed 

• Helps address the issue of false negatives

• We apply the expected slippage formula for the acceptance sampling problem from 
Chen et al. (2018):

+*



6

Minimizing expected slippage does not guarantee avoiding 
the worst-case outcomes of the survey actions

In this case, expected worst slippage need to be minimized

Conditional Tail Expectation (CTE)

(Acerbi and Tasche 2002; Rockafellar and Uryasev 2000, 2002)

- For a confidence level α, CTEα is the expected value of  
the distribution over (1 – α)×100% of worst scenarios

- Minimizing CTE controls the worst survey outcomes

- CTE can be minimized if the objective is linear with 
respect to decision variables (see Rockafellar and 
Uryasev, 2000, 2002)

Incorporating decision-maker’s risk aversion:
Minimizing the expected worst outcome

VaRα

1 - α

CTEα(slippage)

Expected slippage

α

Worst 
slippage

0

Distribution of slippage values

Incorporating risk-averse decision-making perceptions into a pest survey problem:
Problem 1 - Minimize expected largest area of undetected infestations

Problem 2 - Minimize expected worst slippage
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Emerald Ash Borer (EAB)
• Major threat to ash (Fraxinus spp.)
• Causes major damage to urban and forest trees 
• Detected in Winnipeg, MB in December 2017 
• Fast spread rates (>20 km/yr.)* - eradication is problematic
• Spread is associated with human activities, primarily 

with vehicles that could move infested materials 
(Buck and Marshall 2008)

• Two common detection methods:
- Branch sampling         – reliable but expensive
- Trapping                       – cheaper but less reliable

• Poor capacity to detect EAB at early stages due to lack of 
effective pheromone - branch sampling is the only choice

• Local spread rates are uncertain - can only be guessed 
from the records of previous infestations in other regions

Case study: Developing optimal survey strategies 
for EAB outbreak in Winnipeg, MB, Canada

*  Kovacs et al. 2010
Images: CFIA – www.inspection.gc.ca/pests 
New York Dept of Environmental Conservation; USDA-FS, R9, Allegheny NF; 

P(invasion) :
< 0.01
0.01 - 0.06
0.06 - 0.12
0.12 – 0.2
> 0.2
Infested sites

Likelihoods of EAB
invasion in Winnipeg, MB
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• Grid of potential 1x1-km survey sites 
• Survey costs and detection rates – from recent survey 

campaigns (Ryall et al. 2011, 2013; Turgeon et al. 2015):

Detection     Tree survey cost, $-tr-1

rate        20-60cm dbh >60cm dbh

Trapping 0.5             $89.2             $124.4
Branch sampling 0.7           $128.9             $249.6

• Host densities – from municipal tree inventory
• Surveys are limited to public trees above 20-cm dbh
• Distance-dependent likelihoods of EAB spread – from

6-year historical records of EAB spread in Minneapolis-
St. Paul, MN, USA (Fahrner et al. 2017; Osthus 2017)

• Tested two decision-making strategies:
• Risk-neutral - minimizes the expected outcome from the

survey actions
• Risk-averse - minimizes the expected worst outcome

Planning EAB delimiting surveys strategies in Winnipeg, MB

Ash density, 
tr.-km-2:

0 - 500
500 - 1300
1300 - 2700
2700 - 4700
4700 - 7500 
Infested 
sites

Host densities 
In Winnipeg, MB
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Survey allocation examples - $25000 budget 

Sampling rate, 
trees per site:

1-5
6-15
16-25
26-50
>50

Branch
sampling: Trapping:

1-5
6-15
16-25
26-50
>50

No uncertainty Uncertainty Uncertainty, risk aversion

Problem 1 

min(exp. area 
of undetected 
infestations)

Problem 2 

min(expected 
slippage)
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Survey allocation examples - $100000 budget 

Sampling rate, 
trees per site:

1-5
6-15
16-25
26-50
>50

Branch
sampling: Trapping:

1-5
6-15
16-25
26-50
>50

No uncertainty Uncertainty Uncertainty, risk aversion

Problem 1 

min(exp. area 
of undetected 
infestations)

Problem 2 

min(expected 
slippage)
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Surveyed area vs. sampling rate and detection method
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min(expected slippage)
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12k 25k 50k 100k 150k 200k

Impact of changing the trap detection rate
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min(expected slippage)
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Survey method preference vs. the detection rate
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0.4
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Survey budget:
$25000

$100000

Branch sampling is preferred 
if its detection rate, on average, 
is 1.45 times greater than the 
trap detection rate

Problem 1 
min(exp. area of undetected infestations)

Problem 2 
min(expected slippage)
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Minimizing the area of undetected infestations 
vs. minimizing the expected slippage
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Insights for decision-making

• The acceptance sampling approach helps address the issue of false negatives in pest surveys
• The choice of trapping vs. branch sampling is influenced by the survey budget and 

the uncertainty of EAB spread
• In small-budget solutions, branch sampling is preferred
• In large-budget solutions, trapping is preferred but branch sampling is limited to sites 

with both high infestation rates and low host densities
• The impact of uncertainty:

- Larger portion of budget is spent on branch sampling (especially in low-budget solutions)
- Larger area is surveyed at lower sampling rates to compensate for uncertainty 
- More sites are inspected at further distances from the infested area 

• The impact of risk-averse perceptions: 
- The surveys cover even greater area to detect low-probability long-distance infestations 
- Inspections target more sites with high host densities at far distances from the infested   
area where EAB entries could cause significant host damage

• The penalty of risk-averse perceptions on the expected survey outcomes is small
• Work in progress to optimize the delimiting survey programs with optional tree removal 
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