

Spatial Dispersion Pattern and Development of a Sequential Sampling Plan for The Asian Citrus Psyllid (Hemiptera: Liviidae) in Mexico

PRRG

白加列

Dr. Gabriel Díaz-Padilla * J. Isabel López-Arroyo Rafael A. Guajardo-Panes Ignacio Sánchez-Cohen

* Conference speaker Researcher – Modeling and Agrometeorology Program National Institute for Forestry, Agriculture and Livestock Research (INIFAP)

Taichung, Taiwan

12th Annual Meeting of the International Pest Risk Research Group

The Asian citrus psyllid (ACP), Diaphorina citri, Kuwayama (Hemiptera: Liviidae),

Is the vector of Candidatus Liberibacter spp., an alphaproteobacterium associated with Huanglongbing

the most devastating citrus disease in the world

Year of incidence and presence of HLB in the world

The first outbreaks were recorded in 1890 in China

HLB disease is present in 39 countries around the world

Status of the HLB in Mexico

Dissemination of HLB in Mexico – March 2018

The pathogen was found in the Mexican citriculture during 2009, where it has affected to date 15% of the citrus area and the vector is present in all the citrus areas

In Integrated Pest Management, it is essential to know:

What is the dispersion pattern of the insect?

Empirical distribution to which the presence of the pest is adjusted

What is the right time to apply some control techniques?

Sequential Sampling (SS)

- Mminimizes the sample size, (Wald1940, Krebs, 1999) and reduce the inspection and monitoring costs
- In citrus, there are few examples of sequential sampling (eg. Trumble et al., 1995).
- Tsai et al. (2000) established the bases for the development of the sequential sampling design for the control of the Asian Citrus Psyllid (ACP)

Database and Species of Study

2015-2016

Crop	State	Area Sown (ha)	Percent of the national total	Number of Traps	Total records
Drange (Citrus sinensis)	Veracruz	168,635	52.3%	5,227	261,350
Persian lime(Citrus					
atifolia Tanaka)	Veracruz	44,934	54.1%	2,274	113,700
Mexican lime (Citrus aurantifolia)	Colima	18.996	23.4%	2.784	139.200
*				_,	,
National total		555,833		86,337	3,264,715

Yi = The study variable was psyllids captured by trap by week

Basic Statistics and Dispersion of the Number of Captured Psyllids per Trap In a Week, for different States and Citrus Species In Mexico (2015-2016).

					CONFIDENCI	E INTERVAL (95%)
STATE / SPECIES	N	MEAN	STANDARD DEVIATION	STANDARD ERROR	LOWER	UPPER
COLIMA STATE						
Mexican						
Lime	103,516	1.20319	4.47275	0.0139	1.175	1.232
VERACRUZ STATE						
Orange	265232	0.22288	1.32166	0.00257	0.218	0.22791
Persian Lime	116220	0.37145	2.36001	0.00692	0.35954	0.38519
TOTAL	3,264,660	0.26657	1.89891	0.00105	0.2645	0.26878
/						

Evaluation of Dispersion Indices based in Variance and Mean

Parametro	Formula	Nacional	Naranja	Limon Persa	Limón Mexicano
n (tamaño de muestra)	n	3264660	265232	116220	103516
m (media)	$\bar{X} = \frac{\sum\limits_{i=1}^{n} x_i}{n}$	0.2666	0.2228	0.3714	1.2031
S2 (varianza)	$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$	3.6058	1.7467	5.5690	20.0055
Indice de Dispersión (<i>ID</i>)	$ID = \frac{s^2}{x}$	13.5251	7.8398	14.9946	16.6283
Indice de aglomeracion(IA)	$ICS = \frac{s^2}{x} - 1 = ID - 1$	12.5251	6.8398	13.9946	15.6283
Indice de Green (IG)	$GI = \frac{\frac{s^2}{x} - 1}{n-1} = \frac{ICS}{n-1}$	3.8366E-06	2.5788E-05	1.2042E-04	1.5098E-04
Indice de Frecuencia de Clusters (IFC)	$ICF = \frac{\overline{x}}{\frac{\overline{s}^2}{\overline{x}} - 1} = \frac{\overline{x}}{ICS}$	0.0213	0.0326	0.0265	0.0770
Indice de Aglomeracióm Medio (IAM)	$IMC = \overline{x} + \frac{s^2}{\overline{x}} - 1 = \overline{x} + ICS$	12.7917	7.0626	14.3660	16.8314
Index of Patchiness (IP)	$IP = \frac{\overline{x} + \frac{s^2}{x} - 1}{x} = \frac{IMC}{\overline{x}} = 1 + \frac{1}{ICF}$	47.9810	31.6991	38.6807	13.9900
Indice de Morisita (I_M)	$I_M = \frac{n \sum x(x-1)}{n \bar{x} \left(n \bar{x} - 1\right)} = \frac{n \bar{x} I P}{\left(n \bar{x} - 1\right)}$	47.9810	31.6997	38.6816	13.9901
Factor k calculado por momentos		0.0213	0.0325	0.0265	0.0769
Factor k calculado por maxima verosimiliti	1	0.0730	0.0738	0.1223	0.1558

According of the rules of decisión of each Index the result is that the spatial patern of dispersion is agregated

Taylor's Power Law

Taylor and collaborators proposed the so-called Taylor's model, that assume that spatial variance (V) is proportional to a fractional power of the mean population density (M), that is [1]

$$V = \alpha M^{\beta}$$

which can be represented by log-log plots as

$\log V = \log \alpha + \beta \log M$

where α is a proportionality parameter and β was regarded as an index of aggregation, which takes a characteristic value for each species

Resampling 1,000 times and testing diferents groups and simple sizes, the conclusión is that: the spatial dispersión of diaphorina citri is agreegated.

Goodness of fit of the psyllids' population using Chi Square algorithm developed in R

An example is developed below: for which a sample size and a crop of interest are determined.

Example: Mexican lemon, Colima state and sample size = 200

First resampling:

> sampling

Testing the Estimated Frecuencies for differents Empirical Distributions

Psyllids	Frequency	round.RF5.	Poisson	Binomia	Geometric	Neg_ Bin*	Neg_ Bin**
:1	1201	: `	47 205551	42 47296		162 195151	140.220141
01	1991	0.0351	4/.303351	43.4/200	01.30/51	105.100101	140.22914
1	22	0.110	68.23519	70.39896	48.37409	10.45169	19.12210
2	12	0.060	49.12934	52.61653	28.54865	5.32875	9.95942
3	81	0.040	23.58208	24.03246	16.84838	3.50798	6.46357
4	31	0.015	8.48955	7.48416	9.94331	2.56976	4.60896
5	4	0.020	2.44499	1.67811	5.86818	1.99693	3.46371
6	31	0.015	0.58680	0.27872	3.46319	1.61108	2.69181
8	31	0.015	0.02173	0.00324	1.20621	1.12573	1.73264
10	2	0.010	0.00050	0.00001	0.42011	0.83492	1.17678
13	1	0.005	0.00000	0.00000	0.08635	0.57024	0.69976
17	1	0.005	0.00000	0.00000	0.01048	0.36994	0.37470
23	1	0.005	0.00000	0.00000	0.00044	0.21214	0.15973
71	1/	0.005	0.00000	0.00000	0.00000	0.00824	0.00052

Neg_ Bin*= Negative binomial estimating for the moments method.

Neg_ Bin** = Negative binomial estimating for Maximun Likelihood.

Observed Vs Expected frecuency observation for differents distributions

Chi-square and other statistc for testing differents distributions

T	Ľ	Poisson	Bir	nomial	Geome	etric	Negative	Binomial	(mme)	Negative	Binomial(mle)	Ľ
:	1-	:		:		: -			·: ·		:	Ľ
sum of residuals	L.	0.1243	(0.0350	3.	2634		9	.2275		9.3172	Ľ
Chi-square Statistic	L.	112.5171	123	3.0327	44.	1295		14	1.3522		3.2322	Ľ
p-value	Ľ	0.0000	(0.0000	0.	0000		0	.2788		0.9937	Ľ
MSE	L	939.0411	1032	2.6554	335.	5326		57	7.5986		1.8276	L

We resampling 1000 times for differents samples sizes (10,20,200,500,1000) and the results were identical, so we concluded that the psyllids population follows a negative binomial distribution with an alpha close to 95 %.

The maximun likelihood method present a better fit than the moment method.

Sequential Sampling – Wald - Okland

X	9 • 7 •	• ♥ • • Copia de NBD Model Sequential Sampling-USDA-Krebs-Badii_VU_GDP2.xlsx - Microsoft Excel														4	- - ×					
檔	案	常用	插入	版面配置	公式	資料	校閱	檢視													۵ (
	.	Times	New Roi	man - 1	0 - A	Ă Ă Ă	= =	≫⁄	i e	動換列	通用格	鉽	*				÷	*		Σ - -	27	Å
貼_	E 🧹	BI	<u>U</u> –	- 🖉	• <u>A</u> •	¢ž ∗	F 🗏 🗄			『欄置中・	\$ -	% ,	€.0 .00 .00 →.0	設定格式(的條件 ▼	と 格式化 表格・	為 儲存格 • 様式 •	插入	刪除	格式 ▼	⊘ - [₿]	⊧序與篩邊 ▼	≝ 尋找與 選取 ▼
剪見	店簿 「			字型		Es.		對齊方:	τť	5		數值	G.		樣式			儲存格			編輯	
		D5		•	(=	f_x																~
	А	В	С	D	Е	F	G	H	Ι	J	K	L	М	N	0	P	Q	R	S	Т	U	V.
1		Da	0.0600	Francomic I	Imbral		Calculad	e Parametr														
3		kp1	0.2000	Mean	cinorai		Ho	Valores	HI	Valores				Calculo de li	ineas de ace	ptación rech	azo					=
4		k común	0.0780	k value fro	m NB		Кро	0.0600	Kp1	0.2000				0	5.8467	-5.8467	0					
5		alfa	0.0500		1		Kpoqo	0.1062	Kp1q1	0.7128				10	6.9315	-4.7620	0					
6		beta	0.0500		-		qo	1.7692	q1	3.5641				20	8.0162	-3.6772	0					
7		A	19.0000				po	0.7692	p1	2.5641				30	9.1010	-2.5925	0.701423					
8		В	0.0526	_				(p1*q0)/(j	1.6547					40	10.1857	-1.5077	2.6908746					
9								q1/q0	2.0145					50	11.2705	-0.4230	2.6908746					
10								q0/q1	0.4964					60	12.3552	0.6618	4.307278					
11								Slope	0.1085					70	13.4400	1.7465	7.1759816					
12								ho=	-5.8467					80	14.5247	2.8313	8.4094263					
13								h1=	5.8467					90	15.6095	3.9160	9.3573008					
14						-								100	16.6942	5.0008	10.414306					
15		h	p	L(p)	E(n)	-								110	17.7790	6.0855	11.649518					
10		intin	0 77	1.00	33.90									120	18.8037	/.1/03	11.649518					
17		1	0.77	0.95	108.55									130	19.9485	8.2000	14.400401					
10		0.001	1.05	0.50	131.90									140	21.0352	9.3398	16 433594					
20		0.0001	1.39	0.00	05.20									160	22.1100	11 5003	16 /3358/					
20		-0.5	2.56	0.05	57.49									170	24 2875	12 5941	16 433584					
21		-15	3.51	0.01	34 58									180	25 3722	13 6788	19 38785					
23		-2	4.82	0.00	21.75									190	26.4570	14,7636	21,495935					
24		-3	9.21	0.00	9.59									200	27.5417	15.8483	23.871328					
25						-					_	,										•
4	► N	SPRT-N	VBD-Kre	ebs / SPR'	T-NBD-K	rebs (2)	SPRT-1	VBD-Kre	bs (3)	Okland_V	Vall /F	loja2 / F	lojal 🔏									
就結	Ĭ																		1四 70)% (+
	9				Q	Pe												ã (? 🖞 🔺	•	上 [。] 201	∓ 07:07 L8/10/17

p: indicates the average density, *po* the minimum value observed to avoid the insect control,

q: standard deviation and, k-value from the negative binomial obtained by maximum likelihood

For alpha and beta it is suggested to assign values of 0.05.

												Copia c	de NBD Mode	el Sequential Sa	mpling-USDA-Kre	bs-Badii_VU_GDP2 -	Excel							m –	0	×
Archiv	Inicia) Inse	ertar	Diseño de j	página F	órmulas	Datos	Revisar	Vista Des	arrollador	LASERFICHE	E Pov	wer Pivot	♀ ¿Qué dese	a hacer?								DIAZ PADI	LLA GABRIEL	P₄ Comparti	r
P h	🔏 Cortar		Times	New Roma	a • 10 • /	A A	= = =	» *	🛱 Ajustar texto		General	*	I ≢		Normal	Bueno	Incorrecto	Neutral	Cálculo	<u>^</u>	E H	X	∑ Autosuma	A Z	ρ	
Pegar	Copiar	formato	N <i>K</i>	<u>s</u> -	- 🖄 -	<u>A</u> -	= = =	€≣ →≣	\Xi Combinar y ce	ntrar 👻	\$ - % 000	€00 ,00 ,00	Formato	Dar formato	Celda de co	Celda vincul	Entrada	Notas	Salida		Insertar	Eliminar Formato	Rellenar *	Ordenar y	Buscar y	
Р	ortapapeles	5 T	5	Fue	nte	r _a		Aline	ación	Ga	Número	Fa	contractorial	· como tabia ·		Es	tilos					Celdas		Modificar	eleccional	~
	5 -∂	· 😢 I		ic -																						
D7	-		x v	fx																						-
	٨		D		C	F		F	F		C		1		1	K	I M	N	0		D	0	D		c	
19	A		0 0001		1.54	0 4	50	E 89.96	F		G	п			J	N	L IVI	150	23 289	7	P 12 7993	32 53492	к 81		3	1
20			-0.5		2.21	0.1	19	62.80										160	24.492	7	14.0022	32.53492	81			
21			-1		3.21	0.0	05	36.40										170	25.6950	6	15.2052	35.40818	01			
22			-1.5		4.68	0.0	01	20.91										180	26.8986	6	16.4082	37.22731	59			
23			-2		6.89	0.0	00	12.50										190	28.1010	6	17.6111	41.12591	23			
24			-5		15.26	0.0	00	4.90										200	29.304	5	18.8141	41.12591	23			
26																						1.				
27													C	'hara	cterist	tic ope	erating	curve	Ave	rag	ge s	ampli	ng cu	rve		
28				Cálc	ulo de l	líneas	s de aco	entaci	ón v recha	70						F	0		_00			•	C			
29		25	5					/	J J J L C L L	certidu	mbre:		1						90		_					
30				Recha	zo de Ho:			1	Conti	uar m	uestreando		0.9						80	/						
32		s 20		Se apli	ica contro	1							0.8						70							
33		lade						/					0.7						10	/						
34		num					//						0.6					/	$\overline{}^{60}$				$\langle \rangle$			
35		20 15 20 25	5			×				/		é	A 05					L.	E 50							
36		lido							/			F			/				40							
37		- is a 10											0.4						30							
39		ro de			1			/					0.3						20							
40		imei							Ace	ptaciói	n de H0:		0.2						10							
41		ž	5						No	se aplic	ca control		0.1						10							
42			/										0	6	~ +	_			0	0.77	1.08	1.54 2.2	21 3.21	4.68 (5.89 15.20	6
43		C	, 🍊										0	0.7	1.01	2.2	3.2	6.85				p)			
44 4 E			0	20	40	60 .,	80 1	00 1	20 140	160	180 200)				р										
+5 46					11-1	lumero	total de l	muestra	s exammadas																	
47																										
4	۰	SPRT-I	NBD-Krei	os SPF	RT-NBD-Kre	bs (2)	SPRT-NB	D-Krebs () Okland_W	all Ho	oja2 Hoja1	SPRT	-NBD-Binns	-Nyrop S	top line-Green-N	lyrop 📗 🔶										
isto																						E			+ 12	4 %
							(_)	e	📄 🖨	6	x 🗄 🛛 🗤	•	P 3 P	1 😔	<u>9</u>									へ 臣 🕬	09:54 a. r 05/10/20	n. 18

CONCLUSIONS

٠

It was found that the Asian citrus psyllid in Mexico presents an aggregate dispersion.

The empirical distribution of the Asian Citrus Psyllid (ACP) is the negative binomial.

For its management and control, a strategy based on sequential sampling is proposed, which will help to define in an accurate way the opportune moment to apply some pest control measures, this *could bring a decrease in crop losses, control costs and reduce the environmental impact.*

非常感謝你

Muchas Gracias