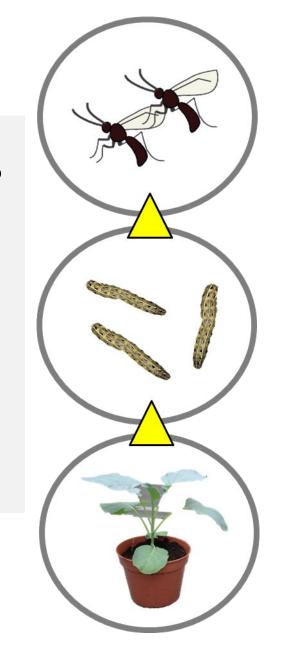


Impacts of elevated temperature and CO₂ concentration on plant-insect interaction in subtropical regions

> IPRRG 2018 : Taichung, Taiwan 17 October 2018

PAPITCHAYA TEAWKUL AND SHAW YHI HWANG^{*}

Outline


• Introduction

-The Effect of Climate Change on Agriculture ?

• Experiment

-Food utilization of 2nd, 3rd and 4th instar larval
-Parasitoid growth performance
-The herbivore long term development

Conclusion

The Effect of Climate Change on Thailand's Agriculture

Climate change impacts on agriculture are expected to significantly affect the economy and the livelihood of the people

Difficulties

- Farmer adaptation
- People awareness

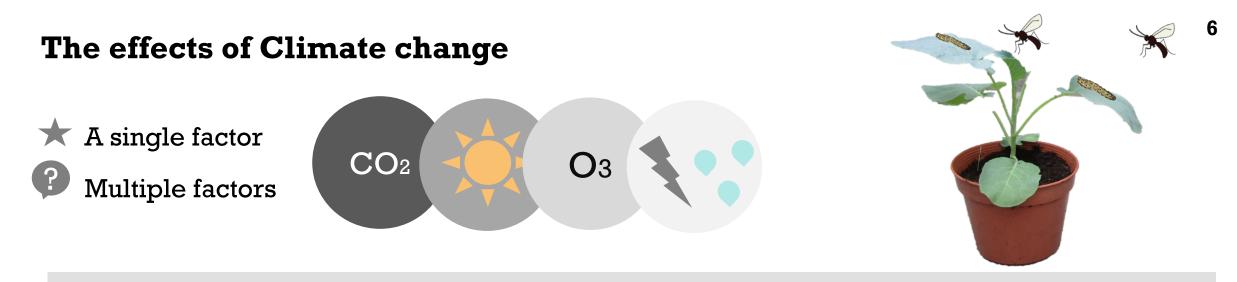
<u>Needs</u>

- Knowledge
- Technology

Lychee production

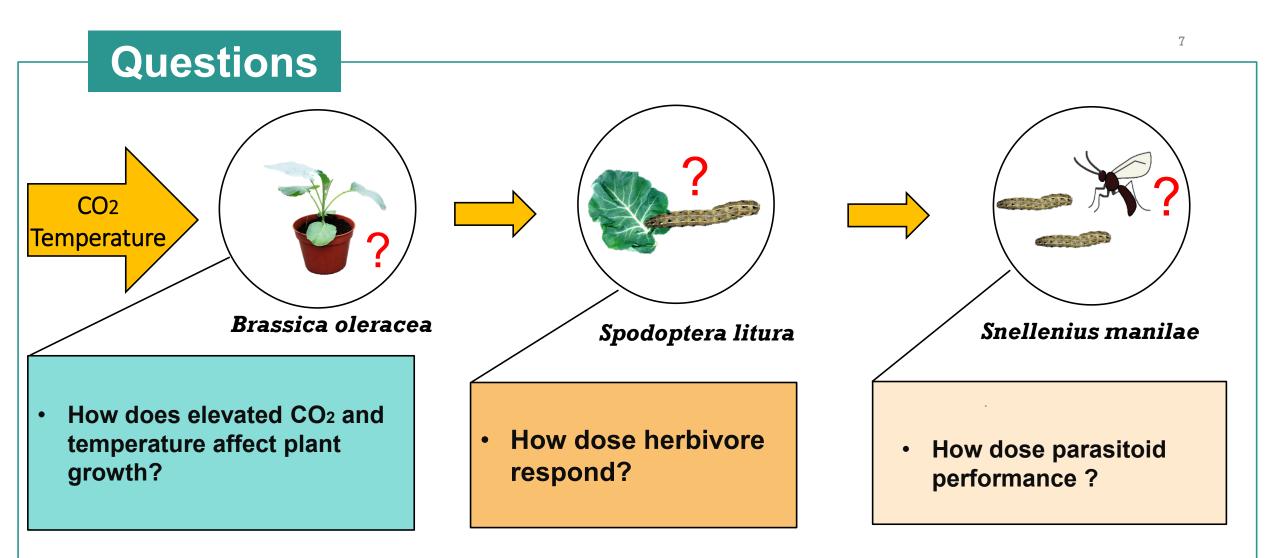
Flooding

Logan production



Insect pest

Control methods Biological pest control.


Cultural control.Trap cropping.Pesticides.

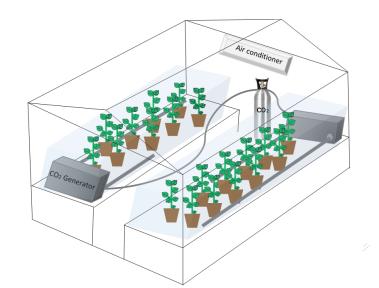
What we know: the effects of climate change on Herbivore

- Promote herbivore outbreaks
- Changes in phenology or distribution
- Insect community

<u>The purpose</u>: To address the consequences of climate change on herbivote performance and the relationship between herbivore and its parasitoid

Insect Culture

Spodoptera litura (Fabricius) is a polyphagous insect. It causes serious economic losses on several important crops.



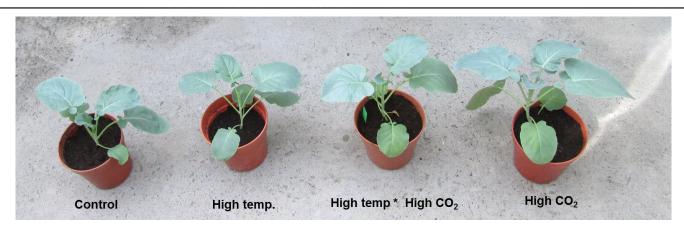
Snellenius manilae (Ashmead) a solitary larval endoparasitoid, and its host range covers only several species of Noctuidae of Lepidoptera; *Spodoptera exigua* (Hübner) and *Spodoptera litura* (Fabricius).

The second instar of *S. litura* is the most suitable host instar, and the suitable growth temperature for *S. manilae* is 25- 30° C (Ting, 2011)

Plant Cultivation Conditions: *Brassica oleracea* L. var. italica.

	Elevated CO ₂ (1000 ppm)	Ambient CO₂ (500 ppm)
Elevated temperature (29/26 °C , day/night)	Combining	High temp.
Ambient temperature (24/21 °C, day/night)	High CO2	Control

***The rising of CO_2 1000 ppm this concentration is expected increase by 2100 and a 5°C warming was based on the IPCC prediction.


*** The level of industrialization, the CO2 measurements made at Hsinchu industrialized area (Taiwan) showed large amplitude of CO2 concentrations varying between 390 ppm and 470 ppm (Wang, Wang, & Liu, 2014).

***The temperature of 24/21°C represented the ambient temperature (The average temperature in 2000-2016 November in Taichung, Central Weather Bureau).

Biomass: Dry weight, fresh weight and leaf area

Growth environment	Dry weight (g)	Fresh weight (g)	Leaf area (cm ²)
Ambient	0.76±0.063 ^b	6.97±0.573 ^{bc}	217±12 ^c
High CO ₂	$1.00{\pm}0.071^{a}$	11.61±0.814ª	322±18ª
High temp.	0.54±0.034°	6.11±0.400°	196±12°
High temp * High CO ₂	0.92±0.041ª	8.14±0.411 ^b	263±10 ^b
P values			
Temperature	0.0089	0.0004	0.0035
CO_2	<.0001	<.0001	<.0001
Temperature*CO ₂	0.1931	0.0278	0.1571

Table 1. Biomass of broccoli plant grown at different temperatures and CO2 concentrations

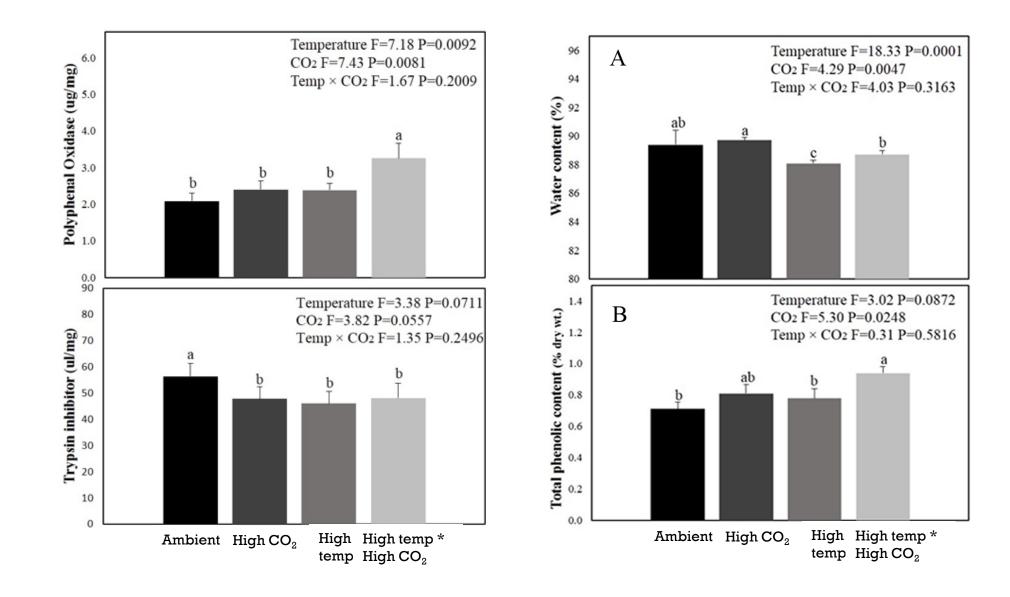

Major foliar chemistry : Nitrogen content, C:N ratio

Table 2. Foliar quality of broccoli plant grown at different temperatures and CO2 concentrations

Growth environment	Nitrogen content	Total nonstructural	C:N ratio
	(%)	carbohydrate (%)	
Ambient	1.574±0.177 ^b	21.73±0.38°	14.94±1.50 ^b
High CO ₂	0.835±0.100°	31.22±0.62 ^{ab}	30.81±1.8ª
High temp.	1.978±0.116 ^a	26.57±0.39bc	18.07±1.7 ^b
High temp * High CO ₂	1.094±0.221 ^{bc}	35.49±1.11ª	23.57±0.6 ^{ab}
P values			
Temperature	0.0098	0.1728	0.2724
CO ₂	<.0001	0.0008	0.0031
Temperature*CO ₂	0.3723	0.1338	0.1931

• Elevated CO2 strongly reduced the nitrogen content and unbalancing the C:N ratio.

• Elevated temperature exerted less of an effect on plant nutrition quality compared with elevated CO_{2.}

Food utilization of early and mid-instar larval

It is defined as the ability of the insect body to ingest and metabolize food through adequate diet.

Short-term feeding

RGR: Relative growth rate RCR: Relative consumption rate ECI: The efficiency of conversion of ingested food ECD: The efficiency of conversion of digested food

Insect initial weight, feces and weight gain

Second-instar

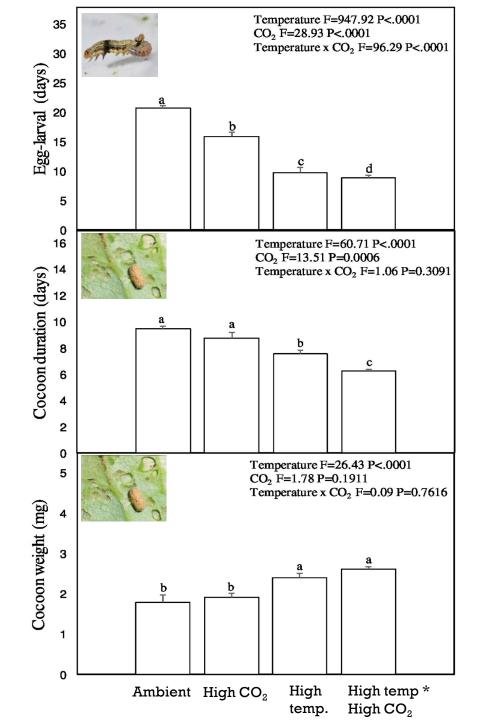
Treatments	RGR (mg/mg/day)	RCR (mg/mg/day)	ECI(%)	ECD (%)
Control	0.084±0.002ª	0.659±0.056 ^b	25.46±2.145°	16.69±2.369ª
High CO ₂	0.064±0.005 ^b	2.028±0.043ª	42.50±4.996 ^{ab}	8.303±1.340 ^b
High temp	0.076 ± 0.005^{ab}	1.206±0.052b	30.62±4.026 ^{bc}	7.830±1.740 ^b
Combined	0.066±0.005 ^b	2.307±0.058ª	52.93±6.847ª	6.761±1.393 ^b
F and P value	e			
Temp	0.17, 0.6815	2.36, 0.1286	4.21, 0.0449	6.28, 0.0149
CO ₂	7.86, 0.0067	23.43, 0.0001	18.55, 0.0001	7.06, 0.0101
Temp*CO ₂	0.91, 0.3448	0.69, 0.4095	0.027, 0.6075	3.03, 0.0867

 Relative growth rate was reduced and larvae consumed more plant materials that had been exposed to elevated CO_{2.}

Spodoptera litura performance

Third-instar

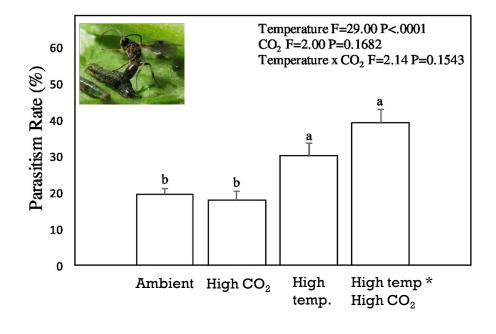
Treatments	RGR (mg/mg/day)	RCR (mg/mg/day)	ECI (%)	ECD (%)
Control	0.091±0.002 ª	0.670±0.235 ^b	29.44±5.190 ^{ab}	15.58±2.236ª
High CO ₂	0.085±0.004 ª	1.269±0.459 ª	14.08±3.162 ^b	14.10±2.126ª
High temp	0.085±0.002 ª	0.727±0.181 ^b	30.02±3.316 ^{ab}	10.41±1.025ª
Combined	0.086±0.002 ª	1.191±0.108 ^{ab}	34.33±3.572ª	16.54±3.257ª
F and P value				
Temp	0.54, 0.4674	1.10, 0.3034	0.48, 0.4933	0.25, 0.6217
CO ₂	0.53, 0.4710	5.11, 0.0320	0.40, 0.0529	0.11, 0.7398
Temp*CO ₂	0.99, 0.3252	0.62, 0.4393	2.17, 0.1492	0.79, 0.3819


• Larvae consumed more plant materials that had been exposed to elevated CO_{2.}

Spodoptera litura performance

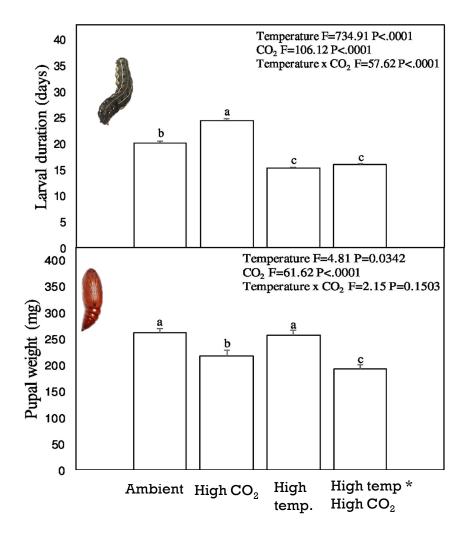
Fourth instar

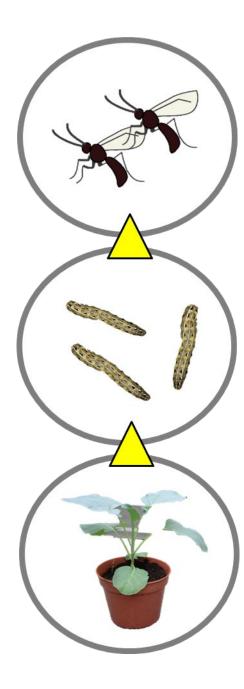
Treatments	RGR (mg/mg/day)	RCR (mg/mg/day)	ECI(%)	ECD (%)
Control	0.080±0.010 ª	0.181±0.047 ^c	13.30±4.145ª	46.73±2.369ª
High CO ₂	0.086±0.001 ^a	0.312 ± 0.036 ab	10.99±2.130ª	28.61±1.340ª
High temp	0.081 ± 0.004 a	0.231±0.035°	9.716±2.085 ^a	56.08±1.740ª
Combined	0.088±0.002 ª	0.449±0.030ª	17.06±2.098ª	26.04±2.534ª
F and P value				
Temp	0.06, 0.803	2.11, 0.1567	0.45, 0.507	0.05, 0.8314
CO ₂	1.08, 0.3067	8.51, 0.0066	0.98, 0.3292	6.62, 0.0197
Temp*CO ₂	0.02, 0.8798	1.11, 0.2999	3.47, 0.0727	0.46, 0.5051


- The food utilization efficiencies of 2nd instar larvae were more sensitive to CO₂-treated foliage than those of the 3rd and 4th instar larvae.
- The various larval stages might respond differently to climate change.

Snellenius manila performance

40 of 2nd larvae / 1 female parasitoid


The adaptability ?



The long term development?

10 larvae / 1cage

Conclusion

A changes plant nutrition's and defensive compounds can affect the performance of herbivorous and it parasitoid.

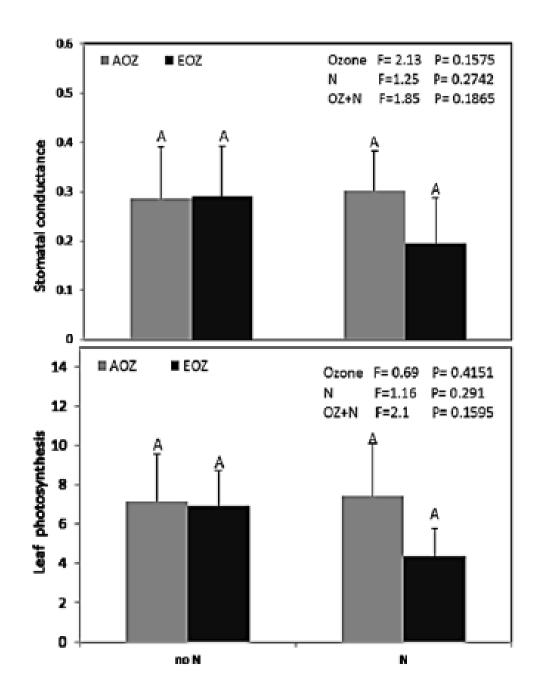
The phenology tri-trophic interactions data will be particularly useful in improving our ability to predict ecosystem-level changes to climate change.

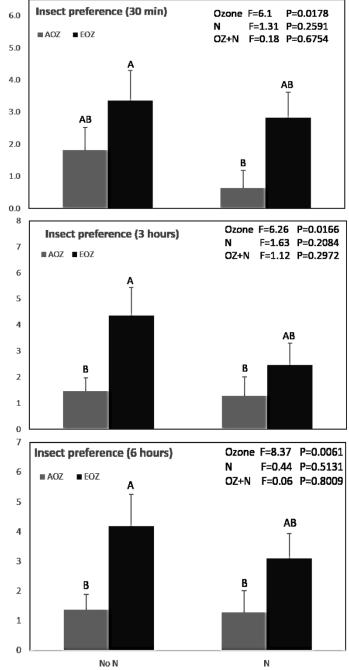
Large-scale and long-term experiments, which will be especially important in terms of making realistic predictions about community responses.

Interesting finding

The potential of using black soldier fly (BSF) compost as a bio-fertilizer under elevated CO2

Hermetia illucens (Black soldier fly)




Impact of ozone and nitrogen deposition on tomato performance and chemical defenses subsequently on insect preference

Free-air O3 enrichment system (FACE).

The elevated O₃ plots 13 was 70 \pm 7 nmol mol⁻¹, the ambient plots were subjected to daytime O₃ concentration of 30 \pm 4 nmol mol⁻¹. The doses of fertilizer applied 80 kg/ha.

National Chung Hsing University

Thank you