Objective Prioritization of Exotic Pests (OPEP): Developing a framework for ranking exotic plant pests

Godshen Pallipparambil¹, Leslie Newton², Jarrod Morrice², ByeongJoon Kim¹, Ernie Hain¹, & Alison Neeley²

¹ Center for Integrated Pest Management, North Carolina State University, North Carolina, Raleigh, USA; ² United States Department of Agriculture, Animal Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology (CPHST), Plant Epidemiology and Risk Analysis Laboratory (PERAL), NC, Raleigh, USA
Who are we?

Raleigh, North Carolina, United States
Who are we?

USDA APHIS PPQ

Field Operations
Science & Technology
Policy Management

Center for Plant Health Science and Technology (CPHST)

Plant Epidemiology and Risk Analysis Laboratory (PERAL)

CPHST Locations
Why do we need to prioritize the exotic pests?

Spend our limited resources on pests that pose the greatest risk.
Our Stakeholders:
Cooperative Agricultural Pest Survey (CAPS)
Risk analysis, evidence, uncertainty and decision-making
We wanted the model to be

- **Objective** - evidence-driven, not opinion-driven
- **Transparent** - separates analysis based on scientific information from that based on policy
- **Separate uncertainty from risk score**
- **Flexible** - can be used to look at risk by region and host
- **Defendable**
How should pests be prioritized?

1. **Consequences of introduction**
 - Is the pest likely to cause **serious impacts** upon introduction & spread

2. **Likelihood of introduction**
 - How likely is the pest to enter the United States, establish a viable population?

3. **Feasibility and Cost Effectiveness**
 - Is it **possible** to survey for the pest?
 - Do the expected impacts of the pest justify the **cost** of a survey program?

4. **Policy considerations**
Objective Prioritization of Exotic Pests (OPEP)

- Impact Potential
- Likelihood of Introduction
- Survey Feasibility & Cost Effectiveness
- Add to survey program?
- Policy Considerations
OPEP: Categorizing by Impact Potential

- Select Criteria & Training Data
- Develop Model
- Validate Model
- Model Use
Identified over 100 non-native arthropods and 80 pathogens that have become established in the United States (> 25 years)

Team of entomologists/pathologists & economists classified each pest/pathogen in terms of its observed impacts in the United States

Training Data and Observed Impacts

- Very High
- High
- Medium
- Low
- Negligible
We developed a set of yes/no and multiple choice questions (criteria) we thought might be predictive of impact.
Impact Potential - Training data

- Pests that were introduced into the U.S.

100 non-native arthropods (Training data)

Selection Criteria
- Biology
- Pest Damage
- Control Measures

(Excel template)
Impact Potential - Criteria

When left unmitigated, the organism causes losses up to:

[a] > 50%
[b] 26-50%
[c] 10-25%
[d] < 10%
[?]
Selecting important criteria

- Chi-square Test and contingency table
Selected Criteria - Insights

- Number of hosts was not found to be related to impact
- Ability to survive harsh conditions was not found to be related to impact for pathogens
Selected Criteria - Insights

- Best predictor of pest behavior in the United States is behavior outside the U.S. and the level of control/research on the organism*

- *If an organism is not a pest in its native range & if it has not been introduced into a novel area, we may not be able to make a prediction

- Specific biological characteristics are not as important in predicting impact
 - parthenogenic reproduction
 - ability to serve as vector for plant pathogen
OPEP Impact Potential

1. Select Criteria & Training Data
2. Develop Model
3. Validate Model
4. Model Use
Model Use: Consideration of U.S. Conditions

- Are there already organisms in the U.S. that fill the same ecological niche?
- Are there tools in the U.S. that have already been developed and are in use that would be effective at controlling the pest?
- Would current production practices or conditions in the United States be effective at mitigating the pest?
Results

- Results (based on logistic regression) are provided as probabilities for a pest resulting in High, Moderate, or Low impact

![Table of Risk Rating and Probabilities]
Uncertainty analysis

We consider uncertainty through a Monte Carlo simulation (5000 iterations) where alternate answers are applied based on uncertainty rating.
Model Use: Communicating with stakeholders

- A list of prioritized exotic pest species with the following information
 - Impact potential category
 - Uncertainty
Model Use: Communicating with stakeholders

▶ A summary document encapsulates the assessment with background information, results from the predictive model, endangered area, references, and an appendix with predictive questions & answers.
Overall OPEP model
Likelihood of Introduction: model development (entry)
<table>
<thead>
<tr>
<th>Knowledge about likelihood of an event</th>
<th>Model probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher than 0.5</td>
<td>0.5 - 1.0</td>
</tr>
<tr>
<td>Lower than 0.5</td>
<td>0.0 - 0.5</td>
</tr>
<tr>
<td>No way the pest will make it</td>
<td>0.0</td>
</tr>
<tr>
<td>Absolutely the pest will make it</td>
<td>1.0</td>
</tr>
<tr>
<td>Not documented in literature</td>
<td>0.0 - 1.0</td>
</tr>
<tr>
<td>Probability (P) well documented</td>
<td>Enter optimum, maximum, minimum</td>
</tr>
<tr>
<td>Event not applicable for this pest</td>
<td>1.0 (for practical purposes)</td>
</tr>
</tbody>
</table>
• Attrition increases with the number of events in a pathway (i.e., the more elements the lower the probability of entry, establishment).
• A totally random simulation could estimate probability of entry, establishment if we know the number of events involved (although the spread of the resulting distribution reflects the uncertainty).
• An increase in information for an event (high, low) improves performance.
Overall OPEP model
Pest Prioritization Modeling Team

- **CPHST PERAL & NCSU CIPM Cooperators**
 - **USDA Team Leads:** Alison Neeley, Leslie Newton, Manuel Colunga Garcia
 - **NC State PIs:** Godshen Pallipparambil, Ernie Hain
 - **Economists:** Lynn Garrett, Trang Vo, Alan Burnie
 - **Entomologists:** Glenn Fowler, Cynthia Landry, Ignacio Baez, Jim Smith, Holly Tuten, Amanda Anderson, Grayson Cave, Robert Mitchell, April Hamblin, Senia Reddiboyina, Douglas McPhie, Jeremy Slone, Alejandro Hector Merchan
 - **Plant Pathologists:** John Rogers, Lisa Kohl, Amanda Kaye, Betsy Randall-Schadel, Jarrod Morrice, Heather Hartzog, Walter Gutierrez, Andrea Sato, Sofia Pinzi, Jennifer Kalinowski
 - **Statistician:** ByeongJoon Kim

- **CPHST CAPS Core Team**
 - Heather Moylett, Lisa Jackson, Melinda Sullivan, Daniel Mackesy, Talitha Molet

- **Others**
 - APHIS-PPD, CIPM Cooperators